УСТРОЙСТВА УПРАВЛЕНИЯ И СБОРА ДАННЫХ СЕРИЙ HCR, MTU, HC, MCU

ВЗРЫВОЗАЩИЩЕННОЕ УСТРОЙСТВО УПРАВЛЕНИЯ НАГРУЗКОЙ HCR-06F Ex

Руководство по эксплуатации ПРОМ.421455.019-03 РЭ

2022

Содержание

1	Введение 5					
2	2 Описание устройства					
2.1 Назначение						
	2.2	Конструкция устройства	7			
		2.2.1 Лицевая панель	8			
		2.2.2 Индикация	8			
		2.2.3 Наружные соединения	11			
	2.3	Основные параметры и характеристики	12			
	2.4	Параметры надежности	14			
	2.5	Режимы управления линией электрообогрева и режимы работы выхода				
		управления	15			
	2.6	Интерфейсы связи	19			
	2.7	Условия окружающей окружающей среды	19			
	2.8	Электромагнитная совместимость	20			
	2.9	Средства обеспечения взрывозащиты	21			
	2.10	Маркировка	22			
	2.11	Упаковка	23			
3	Исп	ользование по назначению	24			
	3.1	Подготовка к использованию	24			
		3.1.1 Требования безопасности	24			
		3.1.2 Внешний осмотр	24			
		3.1.3 Общие указания по монтажу и настройке	24			
4	Tex	ническое обслуживание	26			
	4.1	Обеспечение взрывозащиты при монтаже	27			
	4.2	Обеспечение взрывобезопасности при эксплуатации	27			
5	Рем	OHT	28			
6	Xpa	нение	29			
7	Тра	нспортирование	30			
8	Ути	илизация	31			
9	Fap	антии изготовителя	32			
π	- ~P		~ - 29			
11]						
Π	Приложение Б Габаритные размеры 35					

Приложение В Схемы подключения	36
Приложение Г Маркировочная табличка	38
Приложение Д Программное обеспечение	39
Приложение Е Настройка устройства через Web-интерфейс	48
Приложение Ж Отличительные особенности HCR-06F Rev.3.0 от HCR-06F Rev.2.0	70

Настоящее руководство по эксплуатации (далее РЭ) содержит сведения о взрывозащищенном устройстве управления нагрузкой – HCR-06F Ex Rev.3.0 – (далее устройство), выпускаемом ООО «ПРОМ-ТЭК», предназначенном для дистанционного или автоматического дискретного управления нагрузкой и контроль тока потребления нагрузки.

Целью данного РЭ является обеспечение полного использования технических возможностей, правильной эксплуатации и технического обслуживания устройства.

В случае замены устройства HCR-06F Ex Rev.1.0 или Rev.2.0 на HCR-06F Ex Rev.3.0 обратить внимание на различия в габаритных размерах (см. приложение Б) и схеме подключения (см. приложение В). Подробнее отличия изложены в приложении Ж.

1 ВВЕДЕНИЕ

Устройство изготовлено в соответствии ТУ 4217-013-20676432-2015.

Устройство зарегистрировано в Федеральном информационном фонде по обеспечению единства измерений, рег. № 67073-17.

Устройство представляет собой взрывозащищенный шестиканальный регулятор.

Устройство HCR-06F имеет несколько вариантов исполнения, указанных в условном обозначении прибора:

1 – тип устройства;

2 – вариант исполнения по типу питания:

А – питание 230 В 50 Гц (табл. 2.6);

D – питание 24 В постоянного тока (табл. 2.6).

3 – вариант исполнения по типу интерфейса связи:

RCW – последовательные интерфейсы RS-485 и CAN, 1-Wire;

2RW – 2 последовательных интерфейса RS-485, 1-Wire;

RMW – последовательный интерфейс RS-485, комбинированный интерфейс RS-485/CAN, 1-Wire.

* - Если в условном обозначении позиция 2 отсутствует, то по умолчанию устройство в исполнении А.

** - Если в условном обозначении позиция 3 отсутствует, то - в исполнении RCW.

Примеры записи – Взрывозащищённое устройство управления нагрузкой HCR-06F-ARCW Ex TУ 4217-013-20676432-2015.

Перечень документов, на которые ссылается данное РЭ, приведён в приложении А.

2 ОПИСАНИЕ УСТРОЙСТВА

2.1 Назначение

2.1.1 Устройство предназначено для дистанционного или автоматического управления шестью электрическими нагрузками в соответствии с выбранными режимами работы и может быть установлено во взрывоопасной зоне. Дополнительно обеспечивает измерение потребляемого нагрузкой тока, а также выполнение функций сигнализации и блокировки по основным параметрам.

2.1.2 Устройство может эксплуатироваться автономно или в составе автоматизированных систем контроля и управления технологическими процессами.

2.1.3 Обмен данными с системой контроля/управления осуществляется через последовательные интерфейсы RS-485 и (или) CAN.

2.1.4 Настройка параметров и режимов работы устройства производятся с помощью Web-интерфейса, доступного через сервисный порт USB, который служит и для обновления микропрограммного обеспечения.

2.1.5 Через интерфейс 1-Wire можно подключать цифровые датчики температуры, совместимые с DS18B20.

2.1.6 Устройство имеет вид взрывозащиты типа «повышенная защита вида «е» в соответствии ГОСТ Р МЭК 60079-7.

2.1.7 Устройство имеет вид взрывозащиты типа «герметизация компаундом «m» уровня «mb» в соответствии ГОСТ Р МЭК 60079-18.

2.1.8 Устройство соответствует требованиям технического регламента Таможенного союза ТР ТС 012/2011. Сертификат соответствия № ЕАЭС RU C-RU.HA65.B.00912/21.

2.1.9 Устройство изготовлено в соответствии с требованиями Российского морского регистра судоходства. Свидетельство № 24.44.01.10182.130.

2.1.10 Перечень документов, на которые ссылается данное РЭ, приведён в приложении А.

2.2 Конструкция устройства

Конструктивно устройство состоит из металлического корпуса, залитого компаундом, с установленными печатными платами.

Габариты устройства в сборе представлены в приложении Б.

Внешний вид устройства показан на рисунке 2.1.

Рисунок 2.1 – Внешний вид устройства HCR-06F Ex

На лицевой части корпуса расположены разъёмы для подключения к каналам нагрузок («X1», «X2», «X3»), питания («X4») и интерфейсов («X5»). На верхней части корпуса расположена табличка, содержащая информационные данные (см. п. 2.10.2), как показано на рисунке 2.2.

Рисунок 2.2 – Место расположения маркировочной таблички

2.2.1 Лицевая панель

2.2.1.1 Назначение основных элементов, расположенных на лицевой панели устройства, представлено на рисунке 2.3.

Рисунок 2.3 – Назначение основных элементов на лицевой панели

2.2.2 Индикация

2.2.2.1 Процесс функционирования устройства и его текущее состояние отображаются при помощи светодиодных индикаторов, назначение которых описано в таблице 2.1.

Таблица 2.1 – Назначение индикаторов, расположенных на лицевой панели устройства

Индикатор	Цвет	Описание
Status	Синий	Состояние устройства
R (Rx)	Зеленый	Индикатор состояния коммуникационного порта
T (Tx)	Желтый	Индикатор состояния коммуникационного порта
Alarm	Красный	Индикатор аварии
OUT1–OUT6	Желтый	Индикатор состояния измерительных каналов

2.2.2.2 Каждый индикатор работает в одном из нескольких режимов. Описание режимов представлено в таблице 2.2.

Режим	Описание
Flickering	Периодическое мигание индикатора длительностью 50 мс и частотой
	10 Гц
Blinking	Периодическое мигание индикатора длительностью 200 мс и часто-
	той 2,5 Гц
Single flash	Одиночное периодическое мигание индикатора длительностью 200 мс
	и общим периодом 1200 мс
Double flash	Двойное периодическое мигание индикатора длительностью 200 мс с
	паузой 200 мс и общим периодом 1600 мс
Triple flash	Тройное периодическое мигание индикатора длительностью 200 мс с
	паузой 200 мс и общим периодом 2000 мс
Quadruple flash	Четверное периодическое мигание индикатора длительностью 200 мс
	с паузой в 200 мс и общим периодом 2400 мс
Short flash	Однократное короткое мигание индикатора длительностью 20 мс
On	Постоянное свечение индикатора
Off	Индикатор выключен

2.2.2.3 Описание состояний индикатора «Status» представлено в таблице 2.3.

Таблица 2.3 – Состояния индикатора работы устройства «Status»

Режим	Состояние	Описание
On	Работа	Нормальная работа устройства
Off	Устройство выключено	Устройство выключено или полностью нера-
		ботоспособно
Flickering	Загрузка/инициализация	Устройство инициализируется после подачи
		питания или рестарта ПО. Продолжитель-
		ность режима индикации 2000 мс, если про-
		цесс загрузки требует больше времени, то по
		факту
Blinking	Ошибка конфигурации	Установлена недопустимая комбинация пара-
		метров для исполнения всех или некоторых
		функций устройства
Single flash	Аппаратная ошибка	Отказ или некорректная работа аппаратных
		компонентов устройства

2.2.2.4 Описание состояний индикаторов порта CAN представлено в таблице 2.4.

Режим	Состояние	Описание			
	Инд	икатор «R» («RUN»)			
Blinking	PREOPERATIONAL	Машина состояний данного интерфейса в			
		«PREOPERATIONAL»			
Single flash	STOPPED	Машина состояний данного интерфейса в			
		«STOPPED»			
On	OPERATIONAL	Машина состояний данного интерфейса в			
		«OPERATIONAL»			
Off	BUS OFF	Машина состояний данного интерфейса в «BUS			
		OFF»			
Индикатор «Т» («Тх»)					
Short flash	Short flash Передача фрейма Выполняется передача CAN-фрейма. Если переда				
		ча фреймов происходит чаще длительности Short			
		flash, – непрерывное свечение до передачи послед-			
		него фрейма			
Off	Нет передачи	Нет передачи данных			

Таблица 2.4 – Состояния порта САN (протокол CANopen)

2.2.2.5 Описание состояний индикаторов порта RS-485 представлено в таблице 2.5.

Таблица 2.5 – Состояния порта RS-485

Режим	Состояние	Описание		
Индикатор «R» («Rx»)				
Short flash	Прием байта	Выполняется прием байта. Если прием байтов происхо-		
		дит чаще длительности Short flash, – непрерывное све-		
		чение до приема последнего байта		
Off	Нет приема	Нет приема данных		
Индикатор «Т» («Тх»)				
Short flash	Передача байта	Выполняется передача байта. Если передача байтов		
происходит чаще чем длительность Short flash, –		происходит чаще чем длительность Short flash, – непре-		
		рывное свечение до передачи последнего байта		
Off	Нет передачи	Нет передачи данных		

2.2.3 Наружные соединения

2.2.3.1 Расположение разъёмов описано в п. 2.2.

2.2.3.2 При подключении следует принимать во внимание следующую информацию:

- тип подключения: винтовой;
- направление подключения проводника к направлению вставления, °: 0;
- сечение жесткого провода, мм²: 0,2...2,5;
- сечение гибкого провода, мм²: 0,2...2,5;
- сечение гибкого проводника с кабельным наконечником, без пластмассовой втулки, мм²: 0,25...2,5;
- сечение гибкого проводника с кабельным наконечником и изолирующим хомутом, мм²: 0,25...2,5;
- 2 гибких проводника одинакового сечения с наконечником TWIN с пластиковой втулкой, мм²: 0,5...1,5;
- длина оголяемой части, мм: 10;
- момент затяжки, Нм: 0,3.

2.2.3.3 Подключение устройства производится согласно схемам внешних подключений, представленных в приложении В.

2.3 Основные параметры и характеристики

2.3.1 Основные параметры и технические характеристики устройства соответствуют показателям, приведенных в таблице 2.6.

Таблица 2.6 –	Основные	параметры и	технические	характеристики	HCR-06F
	• • • • • • • • • • • • • • • • • • • •			PP	

Наименование характеристики	Значение характеристики				
Каналы управления	Каналы управления				
Количество, шт	6				
Тип	Комбинированные				
	электронно-механические				
	контакты, НО или НЗ*				
Нагрузочная способность на переменном токе (максимальное	012				
значение), А					
Максимальный пиковый ток за один период (RMS), А	85				
Максимальный средний ток в режиме ограничения среднего	1,5				
тока, А					
Коммутируемое напряжение переменного тока, В	0264				
Количество коммутаций, не менее	1 000 000				
Диапазон измерений силы переменного тока частотой	016				
(50±0,4) Гц, А					
Пределы допускаемой приведенной к диапазону измерений ос-	$\pm 2,0$				
новной погрешности измерений силы переменного тока часто-					
той (50,0±0,4) Гц, %					
Пределы допускаемой приведенной к диапазону измерений до-	± 0.2				
полнительной погрешности измерений силы переменного тока					
частотой (50,0±0,4) Гц при изменении температуры окружаю-					
щей среды в диапазоне рабочих температур на каждые 10° C, $\%$					
Интерфейсы связи и протоколы					
Последовательный интерфейс 1					
Тип	RS-485				
Количество, шт	1				
Протоколы передачи данных	Modbus RTU				
Скорость обмена, кбит/с	9,6115,2				
Последовательный интерфейс 2					
Исполнение М	Исполнение М				
Тип	RS-485/CAN (комбиниро-				
	ванный)				
Количество, шт	1				
Протоколы передачи данных	Modbus RTU/CANopen				
Скорость обмена, кбит/с	9,6115,2/501000				

Наименование характеристики	Значение характеристики			
Исполнение R				
Тип	RS-485			
Количество, шт	1			
Протоколы передачи данных	Modbus RTU			
Скорость обмена, кбит/с	9,6115,2			
Исполнение С				
Тип	CAN			
Количество, шт	1			
Протоколы передачи данных	CANopen			
Скорость обмена, кбит/с	501000			
Питание				
Исполнение А				
Напряжение питания переменного тока (частота, Гц), В	100264 (4763)			
Номинальный ток потребления, мА, не более	50			
Исполнение D				
Напряжение питания постоянного тока, В	1030			
Потребляемая мощность, В·А, не более	10			
Гальваническая изоляция (эл. прочность)				
Вход питания - Канал управления - Все остальные входы/вы-	2500 AC			
ходы, В				
Прочие параметры	·			
Степень взрывозащиты устройства	1Ex e mb IIC T5 Gb X			
Степень защиты корпуса	IP50			
Габаритные размеры (В \times Ш \times Г), мм	в соответствии с приложени-			
	ем Б			
Масса, кг, не более	2,5			
Диапазон рабочих температур, °С	-50+60			
*Запрещается использовать как перекидной контакт.				

2.4 Параметры надежности

Параметры надежности устройства в соответствии с ГОСТ 27.003:

- средняя наработка на отказ, часов, не менее: 120000;
- средний срок службы, лет, не менее: 20;
- среднее время восстановления на объекте эксплуатации силами и средствами дежурной смены, часов, не более: 0,5.

Отказом устройства считается прекращение выполнения одной из функций или нарушение метрологических характеристик вследствие внутренних повреждений, либо вследствие сбоя программного обеспечения.

Примечание – Критерием предельного состояния является экономическая нецелесообразность дальнейшей эксплуатации устройства или его ремонта, если стоимость ремонта равна или превышает 50 % стоимости нового устройства.

2.5 Режимы управления линией электрообогрева и режимы работы выхода управления

Режимы управления линией электрообогрева

Режимы управления линией электрообогрева в целом как совокупности следующих компонентов: выхода управления, нагревательных элементов и датчиков температуры (если есть):

- «Постоянно выкл.» («Heater OFF»). Линия постоянно выключена;
- «Постоянно вкл.» («Heater ON»). Линия постоянно включена;
- «Дистанционный» («Remote»). Управление осуществляется дистанционно через цифровые интерфейсы связи с устройством;
 Внимание: При отсутствии опроса Master-устройством происходит перевод линии в безопасный режим, выбранный пользователем (см. 2.5).
- «Фиксированный ШИМ» («Fixed PWM»). Периодическое включение и отключение линии в зависимости от указанных периода и длительности рабочего цикла ШИМ;
- «Термостат» («Thermal Relay»). Поддержание заданной температуры объекта путём двухпозиционного регулирования по сигналам датчика(ов) температуры;
- «Пропорциональный ШИМ» («PWM Proportional»). Длительность рабочего цикла ШИМ линейно интерполируется между верхней и нижней уставками в зависимости от показаний датчика(ов) температуры (см. рисунок 2.4). Для каждой уставки задаются температура и соответствующая длительность рабочего цикла;

Рисунок 2.4 – Режим работы «Пропорциональный ШИМ»

– «По току саморегулирующегося кабеля» («Cable Current»). Периодическое включение линии в зависимости от тока через саморегулирующийся греющий кабель (см. рис. 2.5). В выключенном состоянии линии с определенным интервалом (T0) производится измерение мгновенного тока путем подачи кратковременных импульсов напряжения в нагрузку. Из полученного значения косвенно вычисляется температура кабеля путем интерполяции значений тока и температуры, полученных при настройке данного режима. Это значение температуры сравнивается с уставкой температуры и принимается решение о необходимости включения линии на заданное время (T1).

Рисунок 2.5 – Режим работы «По току саморегулирующегося кабеля»

При настройке линии пользователь указывает режим, который является безопасным для технологического объекта: «Постоянно выкл.», «Постоянно вкл.» или «ШИМ». Переход в безопасный режим осуществляется в следующих случаях:

- текущий режим «Дистанционный» и при этом отсутствует обмен через выбранный интерфейс;
- текущий режим «Термостат» или «Пропорциональный ШИМ»; режимы используют температуру процесса, но она не может быть вычислена (ошибка

датчика/неверная настройка).

Режим работы при отгрузке предприятием-изготовителем или после обновления встроенного ПО: «Ручной выкл.». После возобновления питания линия возвращается в режим, в котором находилась до потери питания.

Вычисление температуры процесса Для работы в режимах, где управление ведётся по температуре, вводится понятие «температура процесса». В качестве температуры процесса можно использовать как данные с датчика температуры, так и вычисленное значение.

Режимы вычисления температуры процесса:

- а) по одному из датчиков: температура берётся с одного из внешних датчиков;
- б) по среднему: за температуру процесса принимается среднее арифметическое температур, полученных с датчиков;
- в) по минимуму: за температуру процесса принимается минимальная из температур, полученных с внешних датчиков;
- г) по максимуму: за температуру процесса принимается максимальная из температур, полученных с датчиков.

Режимы работы выхода управления

Режимы работы выхода управления определяют последовательность и особенности коммутации нагрузки и могут быть использованы с любым из режимов управления линией электрообогрева в целом.

– Релейный (Relay)

Стандартный релейный режим, в котором дополнительно при коммутации нагрузки контакты силового реле шунтируются электронным ключом для продления срока их службы, снижая негативное влияние переходных процессов.

- Снижение стартового тока (Soft Start)

Режим применяется для снижения стартовых (пусковых) токов в такой характерной нагрузке как саморегулирующийся кабель. В этом режиме переход выхода управления в состояние «Включен» состоит из четырёх предварительных фаз общей продолжительностью 6 мин. выполняемых с помощью электронного ключа. В фазе I выход включается каждый 6-й период T напряжения питающей сети переменного тока, в фазе II - каждый 4-й, в фазе III - каждый 3-й, в фазе IV - каждый 2-й, после чего происходит включение силового реле. Повторное включение выхода возможно только через 9 минут после окончания IV фазы.

– Ограничение среднего тока (Average Current Limit)

Этот режим позволяет ограничить мощность, передаваемую нагрузке, за счет циклического контроля среднего тока на интервале в 60 периодов питающей сети переменного тока. В состоянии выхода управления «Включен» каждый период Т питающей сети производится сравнение вычисленного значения среднего тока за текущий цикл с заданным пороговым значением, по достижении или превышении которого подача напряжения в нагрузку прекращается до начала следующего цикла. В данном режиме коммутация производится только электронным ключом, что в несколько раз снижает максимально допустимый средний ток в нагрузке по сравнению с режимом «Релейный».

Рисунок 2.7 – Режим «Ограничение тока»

2.6 Интерфейсы связи

2.6.1 При использовании в качестве интерфейса связи интерфейса RS-485 следует руководствоваться требованиями стандарта TIA/EIA 485-А.

2.6.2 При использовании в качестве интерфейса связи интерфейса CAN следует руководствоваться требованиями стандарта ISO-11898.

2.7 Условия окружающей окружающей среды

2.7.1 Степень защиты устройства – IP50 по ГОСТ 14254.

2.7.2 Климатические условия исполнения устройства должны соответствовать условиям ОМЗ по ГОСТ 15150.

Примечание – При эксплуатации устройства в особых условиях эти условия должны быть оговорены специальным соглашением между изготовителем и потребителем.

2.8 Электромагнитная совместимость

2.8.1 Электромагнитная совместимость устройства удовлетворяет следующим параметрам согласно ГОСТ 30804.6.2:

- а) Устойчивость к магнитному полю промышленной частоты. Степень жесткости испытаний 4 по ГОСТ IEC 61000-4-10-2014, критерий качества функционирования А;
- б) Устойчивость к радиочастотному электромагнитному полю по ГОСТ 30804.4.3:
 - Степень жёсткости 3 в диапазоне 80 МГц...1 ГГц. Критерий качества функционирования А;
 - Степень жёсткости 2 в диапазоне 1,4 ГГц...2,0 ГГц. Критерий качества функционирования А;
 - Степень жёсткости 1 в диапазоне 2 ГГц...2,7 ГГц. Критерий качества функционирования А.
- в) Устойчивость к электростатическим разрядам. Степень жёсткости 3. Критерий качества функционирования В по ГОСТ 30804.4.2;
- г) Устойчивость к кондуктивным помехам, наведённым радиочастотными электромагнитными полями. Степень жёсткости 3. Критерий качества функционирования А по ГОСТ 51317.4.6;
- д) Устойчивость к наносекундным импульсным помехам. Степень жёсткости 4.
 Критерий качества функционирования В по ГОСТ 30804.4.4;
- e) Устойчивость к микросекундными импульсным помехам большой энергии.
 Класс условий эксплуатации 3. Критерий качества функционирования В по ГОСТ Р 51317.4.5;
- ж) Устойчивость к провалам, кратковременным прерываниям и изменениям напряжения электропитания по ГОСТ 30804.4.11:
 - Провалы напряжения электропитания. Класс электромагнитной обстановки 3. Критерий качества функционирования А;
 - Прерывания напряжения электропитания. Класс электромагнитной обстановки 3. Критерий качества функционирования С.

2.8.2 Создаваемые устройством электромагнитные помехи соответствует требованиям ГОСТ 30804.6.4.

2.9 Средства обеспечения взрывозащиты

2.9.1 Устройство соответствует требованиям к виду взрывозащиты типа «повышенная защита вида «е» по ГОСТ Р МЭК 60079-7, в том числе:

- электрические соединения соответствуют п.п. 4.2;
- предельная температура любой из частей оборудования не нарушает п.п. 4.7;
- степень защиты корпуса, при размещении в определённой руководством по эксплуатации оболочке, соответствует п.п. 4.9.1;
- все используемые Ex-компоненты удовлетворяют требованиям раздела 8;
- маркировка и руководство по применению соответствуют требованиям раздела 9.

2.9.2 Устройство соответствует требованиям к виду взрывозащиты типа «герметизация компаундом «m» уровня «mb» по ГОСТ Р МЭК 60079-18, в том числе:

- в документации указаны технические характеристики применяемого компаунда в соответствии с п.п. 5.1, п.п. 5.2;
- в соответствии с разделом 6 максимальная температура любой поверхности оборудования не превышает допустимой температуры для указанного в документации на оборудование температурного класса взрывоопасной газовой среды;
- расстояния в компаунде для токоведущих частей соответствуют требованиям таблицы 1 п.п. 7.2.4;
- общий объем свободных пространств в компаунде не превышает требований п.п. 7.3.2 для соответствующего уровня взрывозащиты;
- минимальная толщина компаунда вокруг электрических компонентов и цепей соответствует п.п. 7.4.1, а именно таблице 4 и рисунку 1.
- 2.9.3 Знак «Х» в маркировке взрывозащиты обозначает:
- при установке во взрывоопасной зоне, устройство необходимо размещать в соответствующей оболочке со степенью защиты не менее IP54 по ГОСТ 14254.

2.10 Маркировка

2.10.1 Устройство имеет табличку со стойкой маркировкой, расположенной на внешней поверхности корпуса (см. рис. 2.2). Внешний вид таблички приведен в приложении Г.

2.10.2 На маркировочной табличке приведены следующие данные:

- наименование изготовителя и (или) его зарегистрированный товарный знак;
- знак обращения продукции на рынке государств членов Евразийского экономического союза;
- маркировка «Сделано в России»;
- обозначение технических условий, по которым выпускается устройство;
- условное обозначение устройства по ТУ;
- наименование или знак органа по сертификации и номер сертификата;
- маркировка вида взрывозащиты в соответствии ТР ТС 012/2011, ГОСТ 31610.0 (IEC 60079-0);
- обозначение T_a или T_{amb} вместе с диапазоном температуры окружающей среды в соответствии ГОСТ 31610.0 (IEC 60079-0);
- номинальные значения параметров в соответствии с требованиями ГОСТ 31610.0 (IEC 60079-0), ГОСТ 31610.11 (IEC 60079-11), ГОСТ Р МЭК 60079-18;
- серийный номер;
- дата выпуска.

2.11 Упаковка

2.11.1 Упаковка устройства соответствует ГОСТ 23216 в соответствии с условиями транспортирования и хранения.

2.11.2 Внутренняя упаковка устройства соответствует категории ВУ-І по ГОСТ 23216 и обеспечивает защиту от прямого попадания атмосферных осадков, брызг воды и солнечной ультрафиолетовой радиации, ограничение попадания пыли, песка, аэрозолей.

2.11.3 Для изделий, поставляемых на суда, внутренняя упаковка устройств соответствует категории ВУ-ША по ГОСТ 23216 и обеспечивает защиту от проникания атмосферных осадков, аэрозолей, брызг воды, солнечной ультрафиолетовой радиации, пыли, песка, предотвращения развития плесневых грибов и ограничивает проникание к изделию газов и водяных паров.

2.11.4 Транспортная тара соответствует категории КУ-1 по ГОСТ 23216 и обеспечивает защиту от прямого попадания атмосферных осадков, брызг воды и солнечной ультрафиолетовой радиации, ограничение попадания пыли, песка, аэрозолей.

2.11.5 Конструкция транспортной тары должна исключать свободное перемещение устройств внутри.

2.11.6 Вид и размеры транспортной тары, а также массу грузового места определяет изготовитель.

3 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

3.1 Подготовка к использованию

3.1.1 Требования безопасности

3.1.1.1 При эксплуатации устройства необходимо соблюдать общие требования безопасности «Правил технической эксплуатации электроустановок потребителей» (ПТЭЭП) и «Правил по охране труда при эксплуатации электроустановок» (ПУЭ) для установок напряжением до 1000 В.

3.1.1.2 Подключение устройства к электрической схеме должно осуществляться при выключенном источнике питания.

3.1.1.3 Эксплуатационный надзор должен производиться лицами, за которыми закреплено данное оборудование, изучившими инструкцию по эксплуатации, аттестованными и допущенными приказом администрации предприятия к работе с устройством.

3.1.1.4 Устранение дефектов, замена, подключение внешних кабелей, монтаж и отсоединение первичных преобразователей должны осуществляться при выключенном питании.

3.1.1.5 При установке во взрывоопасной зоне, устройство необходимо размещать в соответствующей оболочке со степенью защиты не менее IP54 по ГОСТ 14254.

3.1.1.6 Монтаж, подключение и эксплуатация устройства должны выполняться в соответствии с требованиями ПУЭ, ПТЭЭП, других нормативных документов, регламентирующих применение взрывозащищенного электрооборудования.

3.1.2 Внешний осмотр

3.1.2.1 При внешнем осмотре устанавливают отсутствие механических повреждений, правильность маркировки, проверяют комплектность.

3.1.2.2 У каждого устройства проверяют наличие паспорта с отметкой ОТК.

3.1.2.3 При наличии дефектов покрытий, влияющих на работоспособность устройства, несоответствия комплектности, маркировки, определяют возможность дальнейшего применения устройства.

3.1.3 Общие указания по монтажу и настройке

3.1.3.1 Подключение устройства к измерительным и сигнальным цепям проводить в соответствии со схемой подключения, приведенной в приложении В. 3.1.3.2 После подключения устройство необходимо настроить в соответствии с требуемым режимом работы. Настройка режимов работы и прочих параметров может осуществляться через WEB-интерфейс, доступный по IP-адресу 169.254.241.1 при подключении к порту USB.

Подробное описание конфигурирования устройства приведено в приложении Е.

Примечание - Каналы управления устройства являются комбинированными электронно-механическими контактами. Величина их сопротивления в разомкнутом состоянии конечна и на переменном токе частотой 50 Гц составляет около 300 кОм. Поэтому проверка работоспособности каналов управления устройства должна производиться измерением напряжения или тока при подключенной нагрузке мощностью не менее 10 Вт.

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание устройства сводится к соблюдению правил эксплуатации, хранения и транспортирования, изложенных в настоящем РЭ, профилактическим осмотрам и ремонтным работам. Профилактические осмотры проводятся в порядке, установленном на объектах эксплуатации устройства, и включают:

- внешний осмотр;
- проверку прочности крепления линий связи с источником питания, нагрузкой;
- проверку функционирования. Устройство считают функционирующим, если его показания ориентировочно совпадают с измеряемой величиной.

Примечание – В некоторых случаях профилактический осмотр может включать в себя обновление программного обеспечения (ПО) устройства. Описание процедуры обновления ПО приведено в приложении Д.

Устройство с неисправностями, не подлежащими устранению при профилактическом осмотре, подлежит текущему ремонту. Эксплуатация устройства с повреждениями и неисправностями запрещается.

4.1 Обеспечение взрывозащиты при монтаже

4.1.1 Устройства могут применяться во взрывоопасных зонах в соответствии с установленной маркировкой взрывозащиты, требованиями ТР TC 012/2011 и других нормативных документов, регламентирующих применение электрооборудования во взрывоопасных зонах, настоящего РЭ.

4.1.2 Перед монтажом устройства должны быть осмотрены. При этом необходимо обратить внимание на:

- отсутствие повреждений корпуса;
- предупредительные надписи, маркировку взрывозащиты, а также ее соответствие классу взрывоопасной зоны;
- состояние и надежность завинчивания электрических контактных соединений, наличие всех крепежных элементов.

4.1.3 Монтаж устройства производится в соответствии со схемами электрических соединений, обеспечивая надежное присоединение жил кабеля к токоведущим контактам разъема, исключая возможность замыкания жил кабеля.

4.1.4 Все крепежные элементы должны быть затянуты, съемные детали должны прилегать к корпусу плотно, насколько позволяет конструкция устройства.

4.1.5 После монтажа необходимо выполнить настройку и проверку функционирования.

4.2 Обеспечение взрывобезопасности при эксплуатации

4.2.1 Ввод устройства в эксплуатацию после монтажа, организация эксплуатации и ремонта должны производиться в соответствии с ПТЭЭП.

4.2.2 При эксплуатации необходимо наблюдать за нормальной работой устройства, проводить систематические внешний и профилактический осмотры.

4.2.3 При внешнем осмотре необходимо проверить:

 отсутствие обрывов или повреждения изоляции внешних соединительных кабелей;

– отсутствие видимых механических повреждений на корпусе устройства.

4.2.4 Эксплуатация устройства с повреждениями или неисправностями запрещается.

4.2.5 Эксплуатация и техническое обслуживание устройства должны выполняться в соответствии с требованиями ГОСТ IEC 60079-14.

5 PEMOHT

Ремонт устройства осуществляется изготовителем или аккредитованными юридическими и физическими лицами, имеющими право на проведение ремонта устройства.

Если устройство неисправно, или повреждено, необходимо:

- демонтировать устройство;
- составить акт неисправности, указав призн аки неисправности, контактные данные лица, диагностировавшего неисправность;
- надежно упаковать устройство, чтобы исключить вероятность его повреждения при транспортировке;
- отправить устройство вместе с актом неисправности и сопроводительным письмом, содержащим адрес и Ф.И.О. контактного лица.

6 ХРАНЕНИЕ

Назначенный срок хранения не более 36 месяцев при условиях хранения 4 по ГОСТ 15150 с дополнением:

– температура окружающего воздуха: от минус 50 до плюс 75 °C.

7 ТРАНСПОРТИРОВАНИЕ

Упакованные устройства могут транспортироваться в крытых транспортных средствах: железнодорожных вагонах, автомобилях, трюмах судов и т.д. в соответствии с действующими правилами перевозки на данном виде транспорта.

Условия транспортирования по воздействию механических факторов должны соответствовать требованиям группе С по ГОСТ 23216, а по воздействию климатических факторов должны соответствовать требованиям хранения 4 по ГОСТ 15150 с дополнением:

– температура окружающего воздуха: от минус 50 до плюс 75 °C.

Размещение, крепление упакованных устройств в транспортных средствах должно обеспечивать их устойчивое положение, исключать возможность падения, ударов.

8 УТИЛИЗАЦИЯ

Устройство не содержит веществ, представляющих опасность для жизни, здоровья людей и окружающей среды.

По окончании срока эксплуатации потребитель осуществляет утилизацию устройства.

9 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие устройства требованиям настоящих РЭ при соблюдении потребителем условий хранения, транспортирования, монтажа и эксплуатации

Гарантийный срок эксплуатации – 24 (двадцать четыре) месяца со дня продажи.

Приложение А

(обязательное)

Ссылочные нормативные документы.

Таблица А.1 – Ссылочные нормативные документы

Обозначение	Наименование документа	Пункты
документа		РЭ
ГОСТ 15150-69	Машины, приборы и другие технические из-	введение
	делия. Исполнения для различных климатиче-	2.7.2 7
	ских районов. Категории, условия эксплуата-	6
	ции, хранения и транспортирования в части	
	воздействия климатических факторов внешней	
	среды	
ГОСТ 21130-75	Изделия электротехнические. Зажимы заземля-	2.2
	ющие и знаки заземления. Конструкция и раз-	
	меры	
ΓΟСТ Ρ	Взрывоопасные среды. Часть 7. Оборудование.	2.1.6
МЭК 60079-7-2012	Повышенная защита вида «е»	2.9.1
ГОСТ Р МЭК	Взрывоопасные среды. Часть 18. Оборудование	2.1.7
60079-18-2012	с видом взрывозащиты «герметизация компаун-	2.9.2
	дом «m»	2.10.2
ГОСТ 31610.11-2014	Взрывоопасные среды. Часть 11. Оборудование	2.10.2
(IEC 60079-11:2011)	с видом взрывозащиты «искробезопасная элек-	2.3.1
	трическая цепь «i»	
TP TC 012/2011	О безопасности оборудования для работы во	2.10.2
	взрывоопасных средах	4.1.1
ГОСТ 31610.0-2014	Взрывоопасные среды. Часть 0. Оборудование.	2.10.2
(IEC 60079-0:2011)	Общие требования	
ГОСТ 6651-2009	Термопреобразователи сопротивления из пла-	2.3.1
	тины, меди и никеля. Общие технические тре-	
	бования и методы испытаний	
ГОСТ Р 8.585-2001	Государственная система обеспечения единства	2.3.1
	измерений (ГСИ). Термопары. Номинальные	
	статические характеристики преобразования	

Продолжение таблицы А.1

Обозначение	Наименование документа	Пункты
документа		РЭ
ГОСТ 30804.6.2-2013	Совместимость технических средств электро-	2.8.1
(IEC 61000-6-2:2005)	магнитная. Устойчивость к электромагнитным	
	помехам технических средств, применяемых в	
	промышленных зонах. Требования и методы ис-	
	пытаний	
ГОСТ 14254-2015	Степени защиты, обеспечиваемые оболочками.	2.9.3
(IEC 60529:2013)	(Код IP)	2.7.1
		3.1.1.5
ГОСТ IEC 60079-14-2013	Взрывоопасные среды. Часть 14. Проектирова-	4.2.5
	ние, выбор и монтаж электроустановок	
ГОСТ 23216-78	Изделия электротехнические. Хранение, транс-	2.11.2
	портирование, консервация, упаковка. Общие	2.11.1
	требования.	2.11.4
ГОСТ 30804.6.4-2013	Совместимость технических средств электро-	2.8.2
	магнитная. Электромагнитные помехи от тех-	
	нических средств, применяемых в промышлен-	
	ных зонах. Нормы и методы испытаний	

Приложение Б

(обязательное)

Габаритные размеры

Приложение В

(обязательное)

Схемы подключения

Пример подключения к однофазной сети с использованием нормально разомкнутых контактов:

Рисунок В.1 – Схема подключения HCR-06F Ex
Пример подключения к трехфазной сети с использованием нормально разомкнутых контактов:

Приложение Г

(обязательное)

Маркировочная табличка

Приложение Д (Справочное) Программное обеспечение

Работы с ПО устройства проводится при помощи программы «KSE Firmware Upgrade». Данная программа позволяет устанавливать, создавать резервную копию и отменять установку ПО устройства.

Подготовка к работе

Для работы с программным обеспечением (далее ПО) настраиваемого устройства необходимо кабелем USB подключить модуль к ПК.

Перед началом работы необходимо скачать актуальное ПО на ПК с сайта разработчика по ссылке https://prom-tec.net/model/184 в разделе «Загрузки».

Перед первым запуском программы требуется установить необходимый драйвер. Для этого необходимо:

- Перевести устройство в режим обновления ПО. Для этого следует удерживать кнопку «RST» на устройстве до включения индикатора «S»;
- Запустить ПО и выбрать пункт меню «Установить драйвер устройства» (рис. Д.1).
 Либо запустить программу Zadig (файл Zadig.exe находится в рабочей папке программы KSE Firmware Upgrade);

Рисунок Д.1 – Выбор пункта меню «Установить драйвер устройства»

- В открывшемся окне (рис. Д.2):
 - а) Выбрать устройство «STM Device in DFU Mode» или «STM32
 BOOTLOADER» (отмечено цифрой 1);
 - б) Выбрать драйвер «libusbK» (отмечено цифрой 2);
 - в) Убедиться, что в поле «USB ID» (VID/PID) стоят значения «0483» и «DF11» (отмечено цифрой 3);
 - г) Нажать кнопку «**Replace Driver**» (отмечено цифрой 4).

Zadig	– 🗆 X
Device Options Help	
STM32 BOOTLOADER	∼ ⊡Edit
Driver STTub30 (v3.0.4.0) USB ID 0483 DF11 WCID ² 4	More Information WinUSB (libusb) libusb-win32 libusbK WinUSB (Microsoft)
5 devices found.	Zadig 2.2.689

Рисунок Д.2 – Окно программы «Zadig»

В появившемся окне установить флаг «Всегда доверять программному обеспечению...» и нажать «Установить» как на рисунке Д.3.;

- Безопасность Windows	×
Установить программное обеспечение для данного устройства?	
Имя: libusbK libusbK USB Devices Издатель: USB\VID_0483&PID_DF11 (libwdi autogenera	
Всегда доверять программному обеспечению "USB\VID_0483PID_DF11 (libwdi autogenera".	<u>У</u> становить Не устанавливать
Следует устанавливать программное обеспечение только тех издателей, которым можно обеспечение для устройств можно безопасно установить?	доверять. <u>Как узнать, какое программное</u>

Рисунок Д.3 – Окно «Безопасность Windows»

– По завершении установки появится сообщение как на рисунке Д.4:

Рисунок Д.4 – Окно с сообщением об установке драйвера

Работа в программе KSE Firmware Upgrade

Загрузка системного ПО в устройство

Для загрузки системного ПО на устройство необходимо:

- Запустить программу KSE Firmware Upgrade (файл KSEFirmwareUpgrade.exe находится в рабочей папке программы KSE Firmware Upgrade);
- Убедиться, что устройство находится в режиме обновления ПО (как на рис. Д.5);

Рисунок Д.5 – Окно программы «KSE Firmware Upgrade»

 Нажать на кнопку «Загрузить в устройство» или выбрать аналогичный пункт меню. Откроется окно выбора файла с ПО (рис. Д.6). Выбрать файл ПО;

Рисунок Д.6 – Окно выбора файла

– Откроется окно опций загрузки, в котором можно выбрать отдельный пункт меню: «Системное ПО», «Web-интерфейс», «Прикладное ПО», «Настройки устройства» (рис. Д.7). Далее можно стереть, загрузить ПО по каждому выбранному пункту, либо загрузить все отмеченные пункты нажав кнопку «Загрузить отмеченное»;

Опции загрузки ×
Создать резервную копию ПО
Системное ПО
🗹 Web интерфейс
Прикладное ПО
Настройки устройства
Загрузить отмеченное
Системное ПО Стереть
Прикладное ПО Стереть
История изменений Показать

Рисунок Д.7 – Окно «Опции загрузки»

При отмеченном пункте **«Создать резервную копию»**, перед загрузкой ПО начнется создание резервной копии (рис. Д.8).

KSE Firmware Upgrade	- 🗆 X
Меню Справка	
Устройство не подключено	169.254.241.001 →
Устройство переведено в режим обн	ювления ПО
Загрузить в устройство	Считать из устройства
[12:43:19]: Устройство подключило [12:43:19]: Устройство вышло из ре [12:48:31]: Устройство отключилос [12:48:35]: Устройство переведено [12:51:49]: Устройство вышло из ре [12:52:00]: Устройство вышло из ре [12:52:00]: Устройство подключилос [12:52:20]: Устройство отключилос [12:52:20]: Устройство переведено [12:55:46]: Устройство вышло из ре [12:55:46]: Устройство вышло из ре [12:55:46]: Устройство вереведено [12:57:34]: Загрузка програмного о [13:00:35]: Файл не выбран. [13:00:37]: Загрузка програмного о [13:01:03]: Выбран файл: D:/Downlo. F_rev2_24.5.000.020.zip	ось. жима обновления ПО. зь. в режим обновления ПО. жима обновления ПО. е режим обновления ПО. ось. э. в режим обновления ПО. э. в режим обновления ПО. э. в режим обновления ПО. обеспечения. мбеспечения. аd/HC12-
Создание резервной копии	
	40%

Рисунок Д.8 – Создание резервной копии

Затем откроется окно с информацией о текущем и о записываемом на устройство ПО (рис. Д.9). При нажатии кнопки «Да» начнется процесс записи ПО на устройство.

• KSE Firmware Upgrade ×
Внимание!
Информация в устанавливаемом системном ПО:
Тип устройства: Версия системного ПО: 61.2.0.110 Ревизия системного ПО: 0x34330се0 Время компиляции системного ПО: 21.06.2021 17:12:10
Информация в текущем системном ПО:
Тип устройства: Версия системного ПО: 61.2.0.80 Ревизия системного ПО: 0x7693abc7 Время компиляции системного ПО: 23.03.2021 17:21:01
Продолжить?
Да Нет

Рисунок Д.9 – Окно с информацией о ПО

– По завершении загрузки в окне сообщений появится сообщение «Загрузка завершена». Откроется окно выбора опций загрузки того же файла для загрузки на другое устройство. Если в этом нет необходимости, окно можно закрыть.

Считывание системного ПО

Для считывания системного ПО из устройства необходимо выполнить следующие действия:

- а) Убедиться, что устройство находится в режиме обновления ПО;
- б) Нажать кнопку «Считать из устройства»;
- в) Начнется процесс создания резервной копии ПО из устройства;
- г) По завершении загрузки в окне сообщений появится сообщение «Загрузка завершена».

Загрузка резервной копии системного ПО

Перед запуском процесса записи ПО на устройство программа **KSE Firmware Upgrade** автоматически выгружает из устройства текущее ПО в каталог {путь к папке пользователя}/AppData/Roaming/k-soft/KSEFirmwareUpgrade/backup. Файлам с выгруженным ПО автоматически присваивается имя в формате: {[backup]_[Дата]_[Время выгрузки]}.zip.

Поэтому после записи ПО на устройство существует возможность вернуть ранее установленную версию ПО.

Для этого необходимо следовать указаниям пункта «Загрузка системного ПО в устройство» и выбрать файл с выгруженным ПО в домашней папке устройства.

Слияние файлов настроек Modbus

При различии в файлах настроек Modbus-адресов на устройстве выйдет окно выбора действий (рис. Д.10):

🗣 Выбор действия	×
Файлы настройки Modbus адресов имеют	отличия.
Перезаписать Редактировать Про	опустить

Рисунок Д.10 – Окно выбора действия

- а) Следует выбрать необходимое действие:
 - Кнопка «Перезаписать» для перезаписи файла на устройстве файлом из архива;
 - Кнопка «Пропустить» для сохранения файла на устройстве без изменений;
 - Кнопка «Редактировать» для запуска внешней программы сравнения файлов, указанной в «Параметрах слияния файлов» (по умолчанию программа «WinMerge»). При отсутствии программы по указанному адресу, выйдет окно ошибки (рис. Д.11) и окно выбора действия (рис. Д.12).

Рисунок Д.11 – Окно ошибки запуска программы слияния файлов настроек Modbus–адресов

Выбор действия		×
Файл не отредактирован. По	ерезаписать файл	на устройстве?
	Да	Нет
Рисунок Л.12 – Ок	но выбора дейс	ствия

б) Отредактировать записываемый файл (поле 2) (рис. Д.13), ориентируясь на содержание загружаемого файла (поле 1) и содержание файла настроек на устройстве (поле 3);

Рисунок Д.13 – Окно программы «WinMerge»

- в) Далее необходимо сохранить файл (кнопка 4) (рис. Д.13) и закрыть программу сравнения файлов «WinMerge»;
- г) Во всплывшем окне выбора действия нажать «Да» или «Нет» в зависимости от необходимости сохранения отредактированного файла в устройстве (рис. Д.14).

Рисунок Д.14 – Окно выбора действия

Настройка программы

Параметры загрузки

а) Выбрать пункт «Параметры» главного меню (рис. Д.15)

Рисунок Д.15 – Выбор пункт «Параметры»

- б) Установить необходимые параметры (рис. Д.16):
 - IP адрес устройства;
 - Имя пользователя для подключения по FTP;
 - Пароль для подключения по FTP;
 - Время ожидания подключения по FTP, по истечении которого выйдет сообщение об ошибке;
 - Время ожидания подключения по TCP, по истечении которого выйдет сообщение об ошибке;
 - Для сброса параметров до значений по умолчанию нажать кнопку «По умолчанию»;
 - При необходимости установить флаг для создания резервной копии ПО (дублирует поле в меню загрузки).

Параметры слияния файлов настроек Modbus

а) Выбрать пункт «Параметры слияния файлов» главного меню (рис. Д.17);

📮 Параметры загрузки	×
IP адрес устройства Имя пользователя	1 169.254.241.001
Пароль	3
Время ожидания подключения и Время ожидания подключения и	то FTP, мс 4 10000 то TCP, мс 5 10000
6 По ум	олчанию
Создавать резервную копию	NO OK Cancel

Рисунок Д.16 – Окно параметров загрузки

ę	KSE Firmware Upgrade
Me	ню Справка
Ģ	Загрузить в устройство
÷	Считать из устройства
	Установить драйвер устройства
	Открыть папку с лог файлом
	Параметры слияния файлов
	Параметры
	Выход

Рисунок Д.17 – Окно параметров слияния файлов

- б) Указать командную строку для вызова программы слияния файлов в (пункт 2) или выбрать команду по умолчанию (пункт 1) (рис. Д.18). Использовать ключи \$REMOTE, \$MERGE и \$LOCAL для указания путей к файлам:
 - \$REMOTE путь к файлу настроек Modbus из архива;
 - \$MERGE путь к результирующему файлу настроек Modbus, который запишется на устройство;
 - \$LOCAL путь к файлу настроек Modbus с устройства.

Рисунок Д.18 – Окно настройки слияния файлов

Приложение Е

(Обязательное)

Настройка устройства через Web-интерфейс

Подключение

Для подключения устройства необходимо:

- а) извлечь заглушку порта USB и подключиться стандартным кабелем «USB
 2.0 A (M) USB B (M)» к ПК или ноутбуку;
- б) убедиться, что индикатор «S» мигает или горит. Это свидетельствует о включении устройства (для настройки устройства внешнее питание не требуется);
- в) запустить на ПК браузер и подключиться к устройству по адресу http://169.254.241.1 (это IP адрес, который может быть изменен). Откроется страница с основными настройками, показанная на рисунке Е.1. Устройство готово к настройке.

Autoupdate	English	✓ apply
Access control: Off Login		
Expert page		
Device Description		
+ HCR-06F		
Network Settings		
External I/O Settings		
▶ 1-Wire Sensors		
Application SW		
Application SW Description		
Application SW Control		
Heating		
Heating Line 1		
Heating Line 2		
Heating Line 3		
Heating Line 4		
• Heating Line 5		
Heating Line 6		

Рисунок Е.1

Страница настройки состоит из разделов общих параметров, настроек интерфейсов связи и протоколов, а так же блока управления индивидуальными параметрами линий электрообогрева.

Autoupdate (Автообновление и контроль доступа)

Раздел предназначен для включения/отключения автообновления параметров устройства с помощью соответствующего переключателя (рис. Е.2).

Autoupdate	English	~	apply
Access control: Off Login			
Expert page			

При включенном переключателе обновление выполняется каждые 2-3 секунды, при отключенном переключателе обновление происходит однократно при загрузке страницы. Раздел так же содержит информацию о текущем уровне доступа:

- Off контроль доступа отключен, полный доступ, можно менять любые параметры устройства;
- User контроль доступа включен, вход не выполнен, доступ ограничен, можно менять только текущие оперативные параметры, настройки доступны только для чтения;
- Admin контроль доступа включен, вход выполнен, полный доступ, можно изменять любые параметры.

В разделе есть переключатель языка страницы Web-интерфейса (русский, английский), ссылка на страницу расширенных настроек Expert Page (предустановлены, изменение пользователем не требуется).

Device description (Информация об устройстве)

HCR-06F

В разделе HCR-06F отображены данные по устройству, есть возможность изменить настройки доступа, скачать или загрузить дамп (вкладки Info puc. E.3 и Addons puc. E.4).

R-06F		
Info Addons		
Product Code	19.5.3.0	
Revision Number	0.0.3.0	
UID	2673963575	
SW version	19.5.0.40	
App version	19.5.1.15	
Command		✓ apply
Restore Default Setting	js	apply

Рисунок Е.3

Вкладка Info (рис. Е.3) содержит:

Device Description

- Product Code код устройства;
- Revision Number номер ревизии устройства;
- UID уникальный идентификатор устройства;
- SW version версия системного ПО;
- APP version версия прикладного ПО;
- Command команда, позволяющая:
 - а) включить контроль доступа (Access Control On);
 - б) отключить контроль доступа (Access Control Off);
 - в) сбросить уровень доступа (Access Level Reset);
 - г) сменить пароль доступа (Change Password);
 - д) перезагрузить устройство (Reboot);
 - e) выгрузить прикладное программное обеспечение (Download User App);
 - ж) удалить прикладное програмное обеспечение (Remove User App);
 - з) обновить прикладное программное обеспечение (Update User App).

– Restore Default Settings – восстановить настройки по умолчанию. Для сброса настроек ввести в поле "load".

Вкладка Addons (рис. Е.4) содержит активные ссылки, по которым можно скачать дамп параметров устройства (Download Dump) и загрузить его в устройство (Upload Dump)в формате eds (например, для восстановления настроек после сброса).

При переходе по активной ссылке Download settings1.bin или Download settings2.bin скачаются настройки устройства в виде bin-файла (основной или резервный файл конфигурации).

HCR-06F	
Info	
Download Dump	
Upload Dump	
Download settings1.bin	
Download settings2.bin	

Device Description

Рисунок Е.4

Network Settings (Настройки сети)

В разделе указывается тип применяемого интерфейса связи, а также осуществляется его конфигурирование (рис. Е.5):

twork Settings		
RS-485 CAN	RNDIS (USB)	
Enable	True 🗸	apply
Data rate, kbit/s	115.2 🗸	apply
Parity	Off 🗸	apply
Stop bits	1 v	apply
Serial Status		
Overrun Error Coun	0	
Frame Error Count	0	
Parity Error Count	0	
Rx Frame Count	0	
TX Frame Count	0	
Modbus Settings		
Slave	_	
Device address	245	apply
Answer Delay, ms	0	apply
Poll Timeout, s	20	apply
ew "Modbus mappings		

Рисунок Е.5

Настройка интерфейса RS-485 и протокола Modbus RTU:

Параметры последовательного порта:

- Enable включение/отключение интерфейса;
- Data rate скорость передачи данных, кбит/с (от 9,6 до 115,2);
- Parity проверка чётности (выключена, четный, нечетный);
- Stop bits количество стоповых бит (1 или 2).

Статус последовательного порта:

- Overrun Error Count количество пропущенных кадров;
- Frame Error Count количество ошибочных кадров;
- Parity Error Count количество кадров с неверным битом четности;
- Rx Frame Count количество принятых кадров;

• TX Frame Count -количество отправленных кадров.

Параметры Modbus Slave:

• Device address – адрес Slave устройства в сети;

• Answer Delay – дополнительный тайм-аут ответа (для поддержки устаревших устройств, которые не могут немедленно приступить к обработке ответа после выдачи запроса);

• Poll Timeout – тайм-аут опроса, по прошествии которого принимается решение о том, что отсутствует опрос со стороны Master.

Настройка интерфейса CAN и протокола CANopen:

RS-485 CAN	RNDIS (USB)	
Enable:	False	✓ apply
Data rate, kbit/s	250	✓ apply
CAN status		
RX Count	0	
TX Count	0	
RX Error Count	0	
TX Error Count	0	
Error Code	0	
CANopen settin	gs	
Node id 1	0x7f	apply

Рисунок Е.6

Раздел (рис. Е.6) содержит параметры CAN и параметры протокола CANopen:

- Enable включение/отключение интерфейса;
- Data rate скорость передачи данных, кбит/с (от 9,6 до 115,2);
- Node id ID узла в сети CANopen.

Статус протокола CAN:

- RX Count количество принятых пакетов;
- TX Count количество отправленных пакетов;
- RX Error Count количество ошибок приема;
- TX Error Count количество ошибок передачи;
- Error Code код ошибки.

Интерфейс RNDIS (USB):

Во вкладке (рис. Е.7) задается ір address: IP-адрес в сети (по умолчанию 169.254.241.1).

RS-485 CAN	RNDIS (USB)	
RNDIS (USB) ip a	address 169.254.241.1	apply

Рисунок Е.7

View Modbus Mappings

Khonka View Modbus Mappings открывает окно просмотра привязки адресного пространства Modbus к адресному пространству CANopen.

В разделе соотносятся названия объектов устройства, соответствующие им регистры в Modbus-протоколе и индексы в CANopen-протоколе.

Вкладки Registers (16-битовый тип данных) и Coils (однобитовый тип данных) (рис. Е.8) содержат следующие данные:

- Register номер регистра в протоколе Modbus;
- Index: Subindex двухуровневая адресация CANopen;

• Name Index-Subindex, Comment – название объекта устройства, с которым соотносится данный регистр и адрес;

• Data Type – тип данных (например, беззнаковое – uint, целое – int, двоичное – bool и т.д.);

• Access Туре – тип доступа (например, только чтение – го или запись – rw).

Mapping of CANopen objects in Modbus address space

Registers	Coils				
Modbus	Mappings				
modbus_	<u>mappings.c</u>	fg			
Register	Index:Subi	Name Index - Subindex	Comment	Data Type	Access Type
1001 1002	0x2000:2	Description - Product Code	Код типа устройства	uint32	ro
1003 1004	0x2000:3	Description - Revision Number	Ревизия аппаратной части	uint32	ro
1005 1006	0x2000:4	Description - UID	UID	uint32	ro
1007		Description -	Пата произволства в		

Рисунок Е.8

External I/O Settings (Настройки внешних вводов/выводов)

1-Wire Sensors (Датчики 1-Wire)

В разделе (рис. Е.9) задаются и отображаются параметры работы подключенных цифровых датчиков температуры с интерфейсом 1-Wire.

External I/O Settings

•	1-Wire Sen	ISOIS				
	Enable		False	✓ apply /		
	Search fo	or devices	Scan			
	Sensor #	AI Read F	Float Selected Id	Sensor Select		
	1	nan	0x0	Select Sensor	~	apply
	2	nan	0x0	Select Sensor	~	apply
	3	nan	0x0	Select Sensor	~	apply
	4	nan	0x0	Select Sensor	~	apply
	5	nan	0x0	Select Sensor	~	apply
	6	nan	0x0	Select Sensor	~	apply
	7	nan	0x0	Select Sensor	~	apply
	8	nan	0x0	Select Sensor	~	apply
	9	nan	0x0	Select Sensor	~	apply
	10	nan	0x0	Select Sensor	~	apply
	11	nan	0x0	Select Sensor	~	apply
	12	nan	0x0	Select Sensor	~	apply
	13	nan	0x0	Select Sensor	~	apply
	14	nan	0x0	Select Sensor	~	apply
	15	nan	0x0	Select Sensor	~	apply
	16	nan	0x0	Select Sensor	~	apply
	17	nan	0x0	Select Sensor	~	apply
	18	nan	0x0	Select Sensor	~	apply
	19	nan	0x0	Select Sensor	~	apply
	20	nan	0x0	Select Sensor	~	apply
	21	nan	0x0	Select Sensor	~	apply
	22	nan	0x0	Select Sensor	~	apply
	23	nan	0x0	Select Sensor	~	apply
	24	nan	0x0	Select Sensor	~	apply
	25	nan	0x0	Select Sensor	~	apply
	26	nan	0x0	Select Sensor	~	apply
	27	nan	0x0	Select Sensor	~	apply

Рисунок Е.9

- б) «Search for devices» кнопка «Scan» запускает поиск доступных устройств (датчиков температуры);
- в) «Sensor №» номера датчиков температуры (возможные значения 1-27);
- г) «Sensor Select» выбор датчика. В выпадающем списке будут отображаться только те датчики, которые были обнаружены при сканировании;
- д) «AI Read Float» после сохранения выбора датчика кнопкой «apply» в данном поле отобразится значение его температуры.

Application SW (Прикладное ΠO)

Application SW Description

Подраздел отражает данные по прикладному программному обеспечению (рис. Е.10).

pplication SW Description	n	
Project Name	Heatline	
Project Build Date	2025-03-18 11:38:27	
Project Version	19.5.1.17	
Checksum	0	

Рисунок Е.10

Application SW Control

В подразделе реализована функция запуска, остановки и отладки программного обеспечения (кнопки Start/Stop/Debug) (рис. Е.11). Status отражает текущее состояние.

Application SW Description	
Application SW Control	
Status Control	Running Start Stop Debug

Рисунок Е.11

Heating (Обогрев)

Для настройки основных режимов необходимо на странице быстрой настройки (рис. Е.1) перейти к разделу с индивидуальными параметрами линии электрообогрева «Heating line» (см. рисунок Е.12).

Параметры разделены по вкладкам:

- a) «Parameters» (Параметры);
- б) «Alarms and Trips» (Просмотр флагов аварий и защитных блокировок);
- в) «Limits» (Настройки аварийных пределов);
- г) «Control Modes» (Настройки режимов управления);
- д) «HW Settings» (Аппаратные настройки).

Η	ea	ti	n	g
---	----	----	---	---

leati	ing Line 1	
_		
ŀ	Parameters Alarms an	d Trips Limits Control Modes HW Settings
	Common	
	Name	Line 1 apply
	Set Control Mode	Heater Off
	Current Control Mode	Heater Off
	Safe Mode	0
	Alarm or Trip Present	۲
	PWM Duty Cycle, %	0.00000
	Output	
	Mode	Relay
	Current State	Off
	Logical State	0
	Switch On Counter	22 Reset
	Running Hours, h	0.80611 Reset
	Temperature	
	Process Temperature, °C	nan
	Temperature Sensor 1, °C	nan
	Temperature Sensor 2, °C	nan
	Temperature Limiter, °C	nan
	Current	
'	Load Current, A	nan

Рисунок Е.12 – Parameters (Параметры линии элекрообогрева)

Parameters (Параметры)

Группа параметров «Common» (рис. Е.1) отображает текущее состояние линии электрообогрева:

- a) «Name» название линии электрообогрева со значением по умолчанию («Heating Line 1»);
- б) «Set Control Mode» заданный режим управления линией;
- в) «Current Control Mode» текущий режим управления линией;
- г) «Safe Mode» флаг показывает, находится ли линия в безопасном режиме;
- д) «Alarm or Trip Present» указывает на наличие аварии или блокировки;
- e) «PWM Duty Cycle, %» рабочий цикл ШИМ, %. Отображается значение, заданное во вкладке «Control Modes» при выбранном режиме управления «Fix PWM». Либо отображает расчетное значение, при выбранном режиме управления «Proportional PWM». При других режимах управления значение останется 0.00000.

Группа параметров «Output» отображает состояние выхода управления:

- a) «Mode» режим работы выхода управления;
- б) «Current State» текущее состояние. Отображает такие состояние как: вкл./выкл., ожидание охлаждения после плавного пуска, плавный пуск, ограничение тока, превышение максимального тока, перегрев;
- в) «Logical State» логическое состояние;
- г) «Switch On Counter» счетчик включений;
- д) «Running Hours, h» счетчик часов наработки, ч.

Счетчики имеют функцию сброса.

Группа параметров «Temperature» отображает:

- a) «Process Temperature, °C» текущую температуру процесса, вычисленную в соответствии с выбранным способом, °C;
- б) «Temperature Sensor 1, °C» и «Temperature Sensor 2, °C» температуры датчиков, °C (могут быть задействованы как оба канала, так и один);
- в) «Temperature Limiter, °C» температура датчика ограничителя нагрева, °C.

В поле «Load Current, А» группы параметров «Current» отображается значение тока нагрузки, А.

Alarms and Trips (Просмотр флагов аварий и защитных блокировок)

Вкладка просмотра флагов аварий отображает основные ошибки и состояние блокировки по этим ошибкам (см. рисунок Е.13).

Пределы параметров, а также условия блокировки задаются во вкладке «Limits». При выходе параметра за установленный диапазон появляется флаг аварии.

Parameters Alarms and Tr	ips	Limits	Control Modes	HW Settings	
Temperature	Alarn	n Trip			
Process Temperature Fault	۲				
Temperature Sensor 1 Fault	۲				
Temperature Sensor 1 High	\bigcirc	\bigcirc			
Temperature Sensor 1 Low	\bigcirc				
Temperature Sensor 2 Fault	\bigcirc				
Temperature Sensor 2 High	\bigcirc	\bigcirc			
Temperature Sensor 2 Low	\bigcirc				
Temperature Limiter Fault	\bigcirc				
Temperature Limiter High	\bigcirc	0			
Temperature Limiter Low	\bigcirc				
Current	Alarn	n Trip			
Load Current High	\bigcirc	0			
Load Current Low	\bigcirc				
Output Off Current High	\bigcirc				
Misc	Alarn	n			
Configuration Error	0				
Output Switch On Counter Hig	h 🔾				
Running Hours High	\bigcirc				

Heating

Рисунок E.13 – Alarms and Trips (Просмотр флагов аварий и блокировок)

Группа параметров «Temperature» – аварии, связанные с температурой процесса, датчиками температуры и датчиком ограничителя нагрева показывает:

- a) «Process Temperature Fault» ошибку температуры процесса;
- б) «Temperature Sensor 1 Fault», «Temperature Sensor 2 Fault», «Temperature Limiter Fault» – обрыв, короткое замыкание, неправильное подключение датчиков температуры 1, 2 и датчика ограничителя нагрева;
- в) «Temperature Sensor 1 High», «Temperature Sensor 2 High», «Temperature Limiter High» – превышение верхнего допустимого предела температуры датчиков 1, 2 и датчика ограничителя нагрева. Если была включена блокировка по этому параметру, то так же будет отображаться флаг «Trip»;
- г) «Temperature Sensor 1 Low», «Temperature Sensor 2 Low», «Temperature Limiter Low» – выход за нижний допустимый предел температуры датчиков 1, 2 и датчика ограничителя нагрева.

Группа параметров «Current» – аварии, связанные с измерением тока:

- a) «Load Current High» превышение верхнего допустимого предела тока нагрузки. Если была включена блокировка по этому параметру, то так же будет отображаться флаг «Trip»;
- «Load Current Low» флаг указывает на выход за нижний допустимый предел тока нагрузки;
- в) «Output Off Current High» превышение верхнего допустимого предела тока нагрузки в выключенном состоянии.

Группа параметров «Misc» содержит дополнительные флаги аварии:

- a) «Configuration Error» возникает в случае неправильной настройки устройства;
- «Output Switch On Counter High» превышение верхнего предела счетчика включений;
- в) «Running Hours High» превышение предела наработки.

При нажатии кнопки "Trip Reset" происходит сброс состояния блокировки.

Limits (Настройки аварийных пределов)

Вкладка содержит настройки аварийных пределов и блокировки.

В группе параметров «Trips» (см. рисунок E.14) включаются/выключаются блокировки при превышении верхних пределов на датчиках температуры 1, 2 и датчике ограничителя температуры, а также тока нагрузки. На датчиках температуры возможно задать значение «Trip On and Autoreturn» - автовосстановление (блокировка снимается при достижении температуры ниже нижнего предела).

ш	~~	4i e		
п	ea	uII	ıу	

ting Line 1		
Parameters Alarms and T	rips Limits Co	ontrol Modes HW Settings
Trips		
Temperature 1 High	Enable	apply
Temperature 2 High	Enable	apply
Temperature Limiter High	Enable	apply
Load Current High	Enable	apply
Temperature		
Temperature High, °C	85.00000	apply
Temperature Low, °C	5.00000	apply
Temperature Limiter High, °C	90.00000	apply
Temperature Limiter Low, °C	0.00000	apply
Current		
Load Current High, A	30.00000	apply
Load Current Low, A	0.20000	apply
Output Off Current High, mA	200.00000	apply
Misc		
Switch On Counter High	1000000	apply
Running Hours High, h	nan	apply

Рисунок Е.14

В группе параметров «Temperature» указываются:

- a) в поле «Temperature High, °C» верхняя допустимая граница температуры линии электрообогрева, °C;
- б) в поле «Temperature Low, °C» нижняя допустимая граница температуры линии электрообогрева, °C.
- в) в полях «Temperature Limiter High, °C», «Temperature Limiter Low, °C» верхняя и нижняя допустимые границы температуры датчика ограничителя электрообогрева, °C.

- В группе параметров «Current» указываются:
- a) в поле «Load Current High» верхняя допустимая граница рабочего тока нагрузки, A;
- б) в поле «Load Current Low» нижняя допустимая граница рабочего тока нагрузки, A;
- в) в поле «Output Off Current High» максимально допустимый ток нагрузки в выключенном состоянии, мА.

В группе параметров «Міsc» задаются параметры:

- a) «Switch On Counter » максимальное количество включений линии;
- б) «Running Hours, h» максимальное количество часов наработки.

Control Modes (Настройки режимов управления)

Вид вкладки с настройками режимов управления линией электрообогрева показан на рисунке Е.15. Подробно режимы управления линией рассмотрены в разделе 2.5.

В выпадающих списках полей «Selected Control Mode» и «Safe Mode» необходимо указать Выбранный режим управления и Безопасный режим:

- a) «Heater Off» постоянно выключена;
- б) «Heater On» постоянно включена;
- в) «Remote» дистанционное управление линией;
- г) «Fixed PWM» фиксированный ШИМ;
- д) «Thermal Relay» режим термостата;
- e) «Proportional PWM» пропорциональный ШИМ;
- ж) «By Load Current» по току нагрузки через саморегулирующийся кабель.

«Safe Mode» – безопасный режим при невозможности определить температуру процесса (при неправильной настройке датчиков температуры или обрыве связи с датчиком). На выбор значения «Heater Off», «Heater On» или «PWM».

arameters Alarms and T	Trips Limits Control Modes HW Settings
Selected Control Mode	Proportional PWM 🗸 apply
Safe Mode	Heater Off apply
	Heater On
Control Mode Setup	Remote
Fined DWA	Fixed PWM
Fixed Pyvivi Thermai	Thermal Relay
PWM Period, s	800 Proportional PWM
Under Temp Limit 80	By Load Current
Opper Temp Limit, "C	5.00000 apply
Upper Limit Duty Cycle, %	5.00000 apply
Lower Temp Limit, °C	-30.00000 apply
Lower Limit Duty Cycle, %	100.00000 apply
Process Temperature Mode	Temperature Sensor apply
Allow Incomplete Sensors	

Рисунок Е.15

В «Control Mode Setup» для выбранных режимов управления «Fixed PWM», «Thermal Relay», «Proportional PWM», «By Load Current» указываются необходимые параметры:

- «Fixed PWM» (рис. Е.16):
- а) «PWM Duty Cycle, %» рабочий цикл в процентах от периода ШИМ;
- б) «PWM Period, s» период ШИМ в секундах;

Parameters Alarms and Trips	Limits Control Modes HW Settings
Selected Control Mode	Fixed PWM
Safe Mode	Heater On 🗸 apply 🦯
Control Mode Setup	
Control Mode Setup	ay Proportional PWM By Load Current
Control Mode Setup Fixed PWM Thermal Rel PWM Duty Cycle, % 50.00000	lay Proportional PWM By Load Current

Рисунок Е.16

- «Thermal Relay» (рис. Е.17):
- a) «Process Temp Set-point, °C» уставка температуры, °C;
- б) «Hysteresis Positive, °C» гистерезис положительный, °C;
- в) «Hysteresis Negative, °C» гистерезис отрицательный, °C;
- г) «Process Temperature Mode» способ вычисления температуры процесса. Доступны значения:
 «Off» – выключено;
 «Temperature Sensor 1» – по датчику температуры 1;
 «Second» – по датчику температуры 2;
 «Average» – по среднему значению температур датчиков;
 «Min» – по минимальному значению температур датчиков;
 «Max» – по максимальному значению температур датчиков;
- д) «Allow Incomplete Sensors» установить флаг в случае, если выбранный режим вычисления температуры процесса допускает выход из строя одного из датчиков температуры (по среднему значению температур датчиков; по максимальному значению температур датчиков; по минимальному значению температур датчиков);

Alarms and T	Trips Limits Control Modes HW Settings
Selected Control Mode	Thermal Relay
Safe Mode	Fixed PWM
Fixed PWM Thermal	Relay Proportional PWM By Load Current
Process Temp Set-point, °C	5.00000 apply
Process Temp Set-point, °C Hysteresis Positive, °C	5.00000 apply 5.00000 apply
Process Temp Set-point, °C Hysteresis Positive, °C Hysteresis Negative, °C	5.00000 apply 5.00000 apply 0.00000 apply
Process Temp Set-point, °C Hysteresis Positive, °C Hysteresis Negative, °C Process Temperature Mode	5.00000 apply 5.00000 apply 0.00000 apply Temperature Sensor variation apply

Рисунок Е.17

- «Proportional PWM » (рис. Е.18):
- a) «PWM Period, s» период ШИМ,с;
- б) «Upper Temp Limit, °C» верхняя граница температуры, °C;

- в) «Upper Limit Duty Cycle, %» рабочий цикл в верхней границе температуры, %;
- г) «Lower Temp Limit, °C» нижняя граница температуры, °C;
- д) «Lower Limit Duty Cycle, %» рабочий цикл в нижней границе температуры, %;
- e) «Process Temperature Mode» способ вычисления температуры процесса. Доступные значения аналогичны описанным в пункте г «Thermal Relay» ;
- ж) «Allow Incomplete Sensors» установить флаг в случае, если выбранный режим вычисления температуры процесса допускает выход из строя одного из датчиков температуры (по среднему значению температур датчиков; по максимальному значению температур датчиков; по минимальному значению температур датчиков);

Parameters Alarms and T	Trips Limits Control Modes HW Settings
Selected Control Mode	Proportional PWM 🖌 apply
Safe Mode	Fixed PWM V apply
Control Mode Setup	
Fixed PWM Thermal	Relay Proportional PWM By Load Current
PWM Period, s	600 apply
Upper Temp Limit, °C	5.00000 apply
Upper Limit Duty Cycle, %	5.00000 apply
Lower Temp Limit, °C	-30.00000 apply
Lower Limit Duty Cycle, %	100.00000 apply
Process Temperature Mode	e Temperature Sensol✔ apply

Рисунок Е.18

- «By Load Current» (рис. Е.19):
- a) «Process Temp Set-point, °C» уставка температуры, °C;
- б) «Histeresis Negative, °C» отрицательный гистерезис, °C;
- в) «Measure Period, s» параметр, задающий период измерения мгновенного тока и расчета температуры при выключенном состоянии линии (в секундах). Вычисленное значение температуры сравнивается с температурой уставки и принимается решение о необходимости включения линии;
- г) «Output On Time, s» параметр, задающий время, на которое включается линия (в секундах).

arameters Alarms and Trips	Limits Control M	odes HW Settings
Selected Control Mode	By Load Current 🗸	apply
Safe Mode	Fixed PWM 🗸	apply
Control Mode Setup		
Fixed PWM Thermal Rel	ay Proportional PWM	By Load Current
Process Temp Set-point, °C	5.00000	apply
Hysteresis Negative, °C	0.00000	apply
Measure Period, s	10	apply
Output On Time, s	1800	apply
 Calibration 	L	
Current Control Mode	Heater Off	
Control Mode	Heater Off Heater On B	y Load Current
Instant current	nan	
	Measure current	
Process Temperature, °C	nan	
Calibration Temperature 1, °C	0.00000 ar	oply
Calibration Current 1, A	0.00000 ar	oply
Calibration Temperature 2, °C	0.00000 ar	oply
Calibration Current 2, A	0.00000 ar	oply

Рисунок Е.19

В группе параметров «Calibration»: Каналы управления калибруются по Току кабеля (рис. Е.19).

a) «Current Control Mode» – отображается текущий режим управления (принимает значения выбранного либо безопасного режима управления);

- б) «Control Mode» заданный режим управления при калибровке («Heater off»/«Heater On»/«By Load Current»). «Heater off» и «Heater On» переключаются в процессе калибровки для получения значений тока 1, 2;
- в) «Instant current», «Process Temperature, °C» показываются текущие значения мгновенного тока и температуры процесса (есть кнопка «Measure current» для измерения тока).Температуры измеряются пользователем с помощью внешних устройств.;
- г) «Calibration Current 1, 2, °С» калибровочный ток;
- д) «Calibration Temperature 1, 2, А» калибровочная температура 1, 2.

HW Settings (Аппаратные настройки)

Во вкладке аппаратных настроек указывается (рис.Е.20):

a) «Output Mode» – режим включения выхода управления.

Доступные варианты «Relay», «Soft Start», «Average Current Limit».

Подробно режимы включения канала управления рассмотрены в разделе 2.5;

- б) «Current Limit, А» предельное значение в режиме ограничения среднего тока;
- в) «Temperature Sensor 1 Select» и «Temperature Sensor 2 Select» «Temperature Limiter Sensor Select» – выбор канала подключения датчиков температуры 1, 2 и датчика ограничителя нагрева;
- г) «Load Connection» выбор контакта для подключения нагрузки (Normal Open/Normal closed);
- д) «Minimum Output Hold Time, s» минимальное время удержания выхода, с;
- e) «Startup Delay, s» время задержки первого включения, с;
- ж) «Alarm Hold Time, s» минимальное время сигнализации аварии, с.

В группе параметров «CAN - DeadBand Settings» настраиваются параметры зон нечувствительности.

- a) «Temperature DeadBand Reference, °C», «Current DeadBand Reference, А»– отображаются опорные диапазоны температуры, тока;
- б) «Temperature DeadBand,%», «Current DeadBand,%» задаются зоны нечувствительности по температуре и по току, в %.

Для сохранения каждого изменённого значения нажать кнопку "apply".

Если вносились изменения в значения какого-либо поля, которое изначально имело значение по умолчанию, рядом с этим полем появляется пиктограмма в виде ручки (как на Рис. Е.16).

После внесения необходимых изменений, отключить устройство от USB и вставить заглушку порта USB. Устройство готово к работе.

Tr. Tr.	10	
Parameters Alarms and Trips	Limits Control Mo	HW Settings
Output Mode	Relay	✓ apply
Current Limit, A	0.00000	apply
Temperature Sensor 1 Select	Channel 1-Wire 1	✓ apply
Temperature Sensor 2 Select	Off	✓ apply
Temperature Limiter Sensor Select	Off	✓ apply
Load Connection	COM-NO	✓ apply
Minimum Output Hold Time, s	10	apply
Startup Delay, s	0	apply
Alarm Hold Time, s	5	apply
CAN - DeadBand Settings		
Temperature Deadband Reference, °C	2 1000.00000	
Temperature Deadband, %	0.10000	apply
Current Deadband Reference, A	nan	
Current Deadband, %	0.50000	apply

Рисунок Е.20

Приложение Ж

(Справочное)

Отличительные особенности HCR-06F Rev.3.0 от HCR-06F Rev.2.0

Каналы управления

Вместо разъемов **X1** и **X2** необходимо подключиться к разъемам **X1**, **X2** и **X3** (см. рисунок Ж.1).

Питание

Разъём **X3** переименован в разъём **X4** (см. рисунок Ж.2). Контакт заземления питания **PE** отсутствует поскольку внутри соединен с общей землей.

Alarm

Разъём X4 «Alarm» отсутствует.

Интерфесы связи

Вместо разъёмов **X5** и **X6** один разъём **X6** для портов Р1 и Р2(см. рисунок Ж.3).

Российская Федерация, г. Санкт-Петербург, вн.тер.г. муниципальный округ Гавань, линия 26-я В.О., д. 15, к. 2, лит. А, пом. 168-Н офис 1 Тел.: +7 (812) 245-05-62 Тех. поддержка: +7 (812) 245-05-62 доп. 512 support@prom-tec.net www.prom-tec.net